You are currently visiting the test version of the radboud Dspace repository. To access the production instance, you can navigate to: https://repository.ubn.ru.nl

Fulltext:
57825.pdf
Embargo:
until further notice
Size:
386.0Kb
Format:
PDF
Description:
Publisher’s version
Publication year
2004Source
International Journal of Radiation Oncology, Biology, Physics, 60, 2, (2004), pp. 578-90ISSN
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
Radiation Oncology
Journal title
International Journal of Radiation Oncology, Biology, Physics
Volume
vol. 60
Issue
iss. 2
Page start
p. 578
Page end
p. 90
Subject
UMCN 1.1: Functional ImagingAbstract
PURPOSE: To evaluate models for normal-tissue-complication probability (NTCP) on describing the dose-volume effect in rat thoracolumbar spinal cord. METHODS AND MATERIALS: Single-dose irradiation of four field lengths (4, 1.5, 1.0, and 0.5 cm) was evaluated by the endpoints paresis and white-matter necrosis. The resulting dose-response data were used to rank phenomenological and tissue architecture NTCP models. RESULTS: The 0.5-cm field length showed a steep increase in radiation tolerance. Statistical analysis of the model fits, which included evaluation of goodness of fit (GOF) and confidence intervals, resulted in the rejection of all the models considered. Excluding the smallest field length, the Schultheiss (D(50) = 21.5 Gy, k = 26.5), the relative seriality (D(50) = 21.4 Gy, s = 1.6, gamma(50) = 6.3), and the critical element (D(50,FSU) = 26.6 Gy, gamma(50,FSU) = 2.3, n = 1.3) model gave the best fit. CONCLUSION: A thorough statistical analysis resulted in a serial or critical-element behavior for the field lengths of 1.0 cm and greater. Including the 0.5-cm field length, the radiation response markedly diverged from serial properties, but none of the models applied acceptably described this dose-response relationship. This study suggests that the commonly assumed serial behavior of the spinal cord might be valid for daily use in external- beam irradiation.
This item appears in the following Collection(s)
- Academic publications [244637]
- Electronic publications [132475]
- Faculty of Medical Sciences [92895]
Upload full text
Use your RU or RadboudUMC credentials to log in with SURFconext to upload a file for processing by the repository team.